フレクトのクラウドblog re:newal

http://blog.flect.co.jp/cloud/からさらに引っ越しています

Amazon Chime SDKアプリで映像データ転送量を削減するアイデア -Among Us Auto Mute-

こんにちは。研究開発室の岡田です。

前回の記事では、Amazon Chime SDK for javascript(Amazon Chime SDK JS)を用いて、"Among usをAuto Muteする機能"と"ゲーム画面を配信する機能"を持つゲーム実況システムを構築する方法についてご紹介しました。

前回のシステムでは、最大15名のユーザのゲーム画面をリアルタイムに配信します。このため、映像を受信する側にはそれなりのネットワーク帯域が前提とされます。また、受信するデータの総量も増えるため今どきの言い方(?)でいうと、長時間使用すると「ギガ」が枯渇しやすくなるとも言えます。さらに、受信した分だけ映像をデコードする必要があるためブラウザのCPU負荷が大きくなります。

今回は、このように多くの映像データを配信する際に、ネットワークの帯域やCPUが制限されるユーザでも映像を受信して表示できるようにするためのアイデアをご紹介したいと思います。

下図はアイデアを動かした結果です。赤矢印の部分が受信データ量です。4.4Mbpsから1.6Mbpsに削減できていますね。

Screenshot from 2021-08-16 05-42-49

demo in youtube

続きを読む

MuleSoft:Anypoint PlatformのAnypoint Visualizerで何ができるの??

みなさまこんにちは、CI事業部の釜谷です。

フレクトでは、2020年度からMuleSoftに注力しています。
MuleSoftに興味のあるそこの貴方!是非フレクトにご相談ください!!

今回は、以前紹介したAnypoint Platformの機能の1つ「Anypoint Visualizer」について、紹介したいと思います。

Anypoint Visualizerでできること
  • アーキテクチャ視覚化

    • Muleアプリケーションネットワークのトポロジ(システムやMuleアプリケーションなどをノードで表示)を確認できます。
      f:id:flect-kamatani:20210814232732p:plain
      Anypoint Visualizer:アーキテクチャ視覚化
      ※矢印元ノードは矢印先ノードを呼び出す、を表現しています。

  • トラブルシューティング視覚化

    • Muleアプリケーションごとのメトリックスが視覚的に確認できます。
      f:id:flect-kamatani:20210814232335p:plain
      Anypoint Visualizer:トラブルシューティング視覚化
      ※例として、Muleアプリケーションごとのメトリックス:Avg memory utilizationを視覚化しています。

  • ポリシー視覚化

    • Muleアプリケーションごとに設定されたポリシーが視覚的に確認できます。
      f:id:flect-kamatani:20210814230741p:plain
      Anypoint Visualizer:ポリシー視覚化
      ※例として、Muleアプリケーションごとのポリシー:Rate Limiting, Spike Controlの適用状況を視覚化しています。

次回は、Design Centerの使用方法を紹介したいと思います。

本記事で、少しでもMuleSoftに興味を持って頂けたら幸いです!

Demonstrating the effect of text pre-processing using fastText classification for the Japanese language

This is Shuochen Wang from Flect research lab. Today I am going to focus on the NLP task for the Japanese language. Specifically I am going to demonstrate:

  1. How to use fastText for text classification

  2. The effect of text preprocessing and for text classification.

Table of contents

  • Introduction
    • What is text classification?
    • What is fastText classification?
    • Corpus material
  • Pre-processing
    • Grouping the data
    • Remove hyperlink
    • Word Segmentation
    • Append labels to the file
    • Removing stopwords and numericals
  • Training the model
  • Conclusion
  • Future work
  • Appendix

Introduction

Natural Language Processing (NLP) allows machines to break down and interpret human language. It is used in a variety of tasks, including text classification, spam filter, machine translation, search engine and chatbots.  

What is text classification?

To put it simply, text classification is type of NLP task that classifies a set of predefined categories to any text. It is a type of supervised learning.

続きを読む

AR Remote Instructions base on ARKit Part 2

研究開発室の馮 志聖(マイク)です。 Following the previous article: AR Remote Instructions base on ARKit

cloud.flect.co.jp

This time we will further discuss and explain in detail how to share 3D virtual objects.

Content

  • Content
  • Introduction
  • 3D objects on AR Remote Instructions
    • Purpose
    • System Overview
    • Issue
    • Solution
    • Demo
    • Evaluation
  • Conclusion
  • Future work
  • Other
  • Reference
    • ARKit
    • ARPaint
    • 3d Scanner App™

Introduction

The development of science and technology and the popularization of the Internet have brought many conveniences to people, especially the distance is no longer a barrier between each other. Due to the epidemic, the popularity of remote work has been accelerated. Video chat tools are often used in remote meetings, but the scope of applications is still limited, such as:

Case 1: In the factory. In the case of machine equipment failure, a maintenance person cannot arrive immediately because of remote work. When they try to remote maintenance use video chat on guide maintenance. They are impossible to grasp the damage of the equipment in detail, which will increase time and maintenance costs. If they use the AR remote instructions application to scan the target machine, it will have a 3d object with a good structure of the machine. Also sharing this 3d object with the maintenance person. The maintenance person can share the drawing of the mark on 3d object. It will improve this problem.

Case 2: In the field of interior design. The client wants to know whether the designer's work is suitable for his environment. In the absence of any environmental data file where the client is located, the designer only uses video chat, unable to observe the differences and details in detail. If they use the AR remote instructions application to scan the target area(like room or kitchen, etc...) or product(like chair or table, etc...), it will have a 3d object with a good structure and material of the target area or product. Also sharing this 3d object with the designer or client. The designer can add the product to 3d object of the target area, and design its style. The client can add the product to 3d object of the target area, and know whether the designer's work is suitable for his environment. It will improve this problem.

At present, only two cases are cited. Generally speaking, there may be more other cases. Based on various restrictions, we hope to develop software that can break through these restrictions.

続きを読む

Remote monitoring system for operating and monitoring robots based on simple user interface

研究開発室の馮 志聖(マイク)です。

Content

  • Introduction
  • Remote control on ROS(Robot Operating System)
  • Conclusion
  • Future work
  • Other
  • Reference

Introduction

With the rapid development of science and technology and the popularization of the Internet, people are pursuing a better quality of life, and relaxed and happy work has become the first choice. At the same time, many labor-intensive and overtime jobs have gradually appeared in the labor gap. To make up for the labor gap, it is an inevitable trend for robots to replace humans. In our daily life, we often benefit from services provided by robots, such as sweeping robots, restaurant front desk services, home delivery services, etc., Many products we use are also made by robots in factories. To facilitate production, robots have gradually become indispensable.

In recent years, due to the spread of the epidemic and for security reasons, most people choose to work at home. Some software and tools based on remote collaboration have gradually gained attention. Among them, video chat services, which can increase the chances of discussions, especially have grown dramatically. The fluency of meetings allows members to quickly reach a consensus. For this reason, remote work is becoming no longer a barrier, but remote collaboration also has many limitations. Many researchers and developers have discussed how to break through these limitations.

What is the correlation between the above two? For example, in the following two situations, remotely controlling the robot would be a better choice. First, there are some areas in the world that are hazardous to humans or living things. The remote control can allow robots to perform tasks in these dangerous areas. Second, some emergency tasks require the assistance of senior personnel from other countries. Based on the epidemic, time, and distance considerations, remote control robots can be used to perform tasks.

In this blog, we will discuss a fast and effective way to establish a simple interface operation and monitoring robot system, and verify the feasibility of remote execution of tasks.

続きを読む

MuleSoft:Anypoint PlatformのAnypoint Monitoringで何ができるの??

みなさまこんにちは、CI事業部の釜谷です。

フレクトでは、2020年度からMuleSoftに注力しています。
MuleSoftに興味のあるそこの貴方!是非フレクトにご相談ください!!

今回は、以前紹介したAnypoint Platformの機能の1つ「Anypoint Monitoring」について、紹介したいと思います。 docs.mulesoft.com

Anypoint Monitoringでは、主に以下の機能が利用できます。

ダッシュボード

アプリケーション(API群)のパフォーマンスが監視できます。

ダッシュボード | MuleSoft Documentation

https://docs.mulesoft.com/jp/monitoring/_images/dashboard-built-in.png

ダッシュボードには、標準搭載の組み込みダッシュボードとカスタマイズができるダッシュボードの2つがあります。

ダッシュボードでは、以下のメトリクスの監視が行えます。

  • インバウンド:エンドポイント別平均要求数、平均応答数など
  • JVM:CPU使用率、メモリ使用量など
  • アウトバウンド:エンドポイント別平均要求数、平均応答数など

※詳細は、ダッシュボード設定リファレンス | MuleSoft Documentationを参照ください。

イベント駆動アラート

アプリケーションが期待通りに動作していない時や定義した閾値を超えた時に、アラート(メール送信)が発行できます。
アラート | MuleSoft Documentation

https://docs.mulesoft.com/jp/monitoring/_images/basic-alerts-config.png

アラートには、サーバまたはアプリケーションのメトリクスに対する基本アラートとカスタムダッシュボード上のメトリクスに対する詳細アラートがあります。

ログ管理

Runtime Manager​ を使用したログの記録に加え、Anypoint Monitoring を使用してログファイルを集約し、ログの管理、検索、絞り込み、分析を行うことができます。 Anypoint Monitoring のログ | MuleSoft Documentation https://docs.mulesoft.com/jp/monitoring/_images/log-expanded.png

契約プラン

Anypoint Monitoringは契約プランにより、使用できる機能が異なります。

docs.mulesoft.com

次回は、Anypoint Visualizerについて、紹介したいと思います。

本記事で、少しでもMuleSoftに興味を持って頂けたら幸いです!

マルチプレイヤーゲーム実況システムをAmazon Chime SDK JSで作る。(Among Us Auto Mute)

こんにちは。研究開発室の岡田です。

オリンピックの開催が間近になりましたが、最近はデジタルの界隈でもe-sportsがにわかに注目を集め始めていますね。これを後押しするというわけでもありませんが、今回はAmazon Chime SDK JSを用いてマルチプレイヤーゲームの実況配信システムを作ってみたいと思います。特に今回は、公式がファン創作についてポリシーを明確にしてくれているAmong Usを題材にしてみようと思います(ref)。

具体的には下図のようなものを作ります。中央に各ユーザのゲーム画面が表示されています。この画面を観戦者には見えるようにして、プレイヤーには見えないようにします。また音声についても同様に状況に応じて自動的にミュート、ミュート解除を行います。Amazon Chime SDK JSのユニークな機能を活用して、これらができるように作り込んでいきたいと思います。 image

続きを読む